

HIGGS PROPERTIES: SPIN, PARITY AND COUPLINGS

REGINA DEMINA (UNIVERSITY OF ROCHESTER)

AFTER DISCOVERY:

WHAT'S NEXT IN HIGGS PHYSICS?

1 OCTOBER, 2012, BROOKHAVEN NATIONAL LABORATORY

ELECTROWEAK SYMMETRY BREAKING

Problem #1: W and Z boson masses violate SU(2), gauge

invariance

Solution: Postulate #1

There exists a scalar complex field doublet ϕ

Mexican hat (bottle's bottom) potential

$$V(\phi) = \lambda(-v^2\phi^*\phi + (\phi^*\phi)^2)$$

- Minimum at $\phi_{\min} = v / \sqrt{2}$
- Non-zero v generates masses for W and Z-bosons
 - · Absorb 3/4 degrees of freedom
 - Given W mass (muon decay rate) v is constrained to be 246 GeV
 - Predict ratio between W and Z masses verified in experiment
- One remaining d.o.f. Higgs boson (s=0, P=+)

HIGGS BOSON

- Expand ϕ near its minimum $\phi = [v + h(x)] / \sqrt{2}$
- Lagrangian

$$L = \frac{1}{2} [(\partial^{\mu} - igA_{\mu})(v+h)(\partial^{\mu} + igA_{\mu})(v+h)] +$$

$$+\frac{1}{2}\mu^{2}(v+h)^{2}-\frac{1}{4}\lambda(v+h)^{4}-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

- $(g^2v^2/2)A_{\mu}A^{\mu}$ mass term for gauge bosons
- $\lambda v^2 h^2$ mass term for the scalar boson itself
- h³,h⁴ -self interaction terms
- hAA, h²AA interaction with gauge fields terms

v constrained by M_W

λ- free parameter Higgs mass is not predicted

This is what we were after

Byproducts

Strength of these terms is predicted given λ (M_H)

HIGGS MECHANISM OF FERMION MASS GENERATION

Problem #2: fermion masses violate SU(2)_L gauge invariance

Solution: Postulate #2

- Yukawa-like coupling to fermions generate fermion masses in a gauge invariant way through interaction with Higgs field
- This mechanism does not reduce the number of free parameters in the model, masses are traded for the strength of interaction with the Higgs field (g_f)

$$\sqrt{\frac{1}{2}}g_f v(\bar{f}_L f_R + \bar{f}_R f_L)$$

$$m_f = \sqrt{\frac{1}{2}}g_f v$$

TESTABLE PREDICTIONS

- Existence of a true scalar boson measure spin, parity
- Couplings to gauge bosons
 - Probing custodial symmetry one of best motivated symmetries given that the new state is responsible for breaking the EW symmetry
- Coupling to fermions
 - New state can be responsible for EW symmetry breaking but NOT for generation of fermionic masses – fermiophobic Higgs
- Self coupling
 - h³,h⁴ -self interaction terms arise from the same assumption as couplings to gauge fields. Interesting to test their absolute and relative strength
 - Require large statistics to observe

HIGGS PRODUCTION @ LHC

Gluon Fusion
- dominant process

Vector Boson Fusion 20% of gg @ 120GeV

Associated Production W or Z (1-10% of gg)

Associated Production ttbar or bbbar (1-5% of gg)

4 production mechanism → key to measure H-boson parameters

PROJECTED SIGNAL

Current status: signal observed in ZZ, $\gamma\gamma$ and WW modes There is some evidence (Tevatron) for bbbar coupling

Projected signal by the end of the run

OBSERVABLES

- the framework to probe the Higgs couplings issued by the "low mass" LHCXS WG and endorsed by both CMS and ATLAS: arXiv: 1209.0040
- Overall signal strength μ

g g fusion

DISENTANGLING COUPLING FROM PRODUCTION AND DECAY

VBF production – sensitive to vector boson couplings gg→H – sensitive to quark loops;

H→γγ – fermion+W loop

H→WW, ZZ – vector boson coupling at decay

DISENTANGLING COUPLING FROM PRODUCTION AND DECAY

Boson and fermion scaling assuming no invisible or undetectable widths

Free parameters: $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.

	${\rm H} \rightarrow \gamma \gamma$	$\mid H \to ZZ^{(*)} \mid H \to WW^{(*)}$	$H o b\overline{b} \mid H o \tau^- \tau^+ \mid$	
ggH	$\kappa_{\rm f}^2\!\cdot\!\kappa_{\gamma}^2(\kappa_{\rm f},\!\kappa_{\rm f},\!\kappa_{\rm f},\!\kappa_{\rm V})$	$\kappa_{ m f}^2\!\cdot\!\kappa_{ m V}^2$	$\kappa_{\mathrm{f}}^2 \cdot \kappa_{\mathrm{f}}^2$	
$\frac{ggH}{t\bar{t}H}$	$\kappa_{ m H}^2(\kappa_i)$	$\overline{\kappa_{ m H}^2(\kappa_i)}$	$\overline{\kappa_{ m H}^2(\kappa_i)}$	
VBF	20 ² 20 ² (20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	$\kappa_{ m V}^2 \cdot \kappa_{ m V}^2$	$\kappa_{ m V}^2 \cdot \kappa_{ m f}^2$	
WH	$\frac{\kappa_{\mathrm{V}}^{2} \cdot \kappa_{\mathrm{\gamma}}^{2}(\kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{V}})}{\kappa^{2}(\kappa_{\mathrm{C}})}$	$rac{\kappa_{ m V}\cdot\kappa_{ m V}}{\kappa_{ m H}^2(\kappa_i)}$	$rac{\kappa_{ m V}\cdot\kappa_{ m f}}{\kappa_{ m H}^2(\kappa_i)}$	
ZH	$\kappa_{ m H}^{2}(\kappa_{i})$	$H(\kappa_l)$	$H(\kappa_i)$	

$k_V k_F$ - scale vector and fermion coupling

 $K_{\gamma}(k_{V_{i}}, k_{F})$ – coupling to γ , depends on W and fermion loops ($H \rightarrow \gamma \gamma$) gg $\rightarrow H$ – sensitive to quark loops;

H→WW, ZZ – vector boson coupling No direct Higgs to fermion couplings observed yet, limits on H $\rightarrow \tau\tau$, H \rightarrow bb

CURRENT STATUS: TESTING CUSTODIAL SYMMETRY

- λ_{W7} : ratio of scale factors for W and Z
- The measurement of the H→WW/H→ZZ ratio is mostly driven by the ratio of the Higgs couplings to WW and ZZ, which is protected by custodial symmetry
- Combination of "inclusive" WW and ZZ yields gives $R_{ww/zz}$ =0.9^{+1.1}-0.6

MORE TESTS TO COME

- λ_{lq} : ratio of scale factors for leptons and quarks
 - kV left floating in the fit
- λ_{du} : ratio of scale factors for down and up type of fermions
 - kV left floating in the fit
- κ_g κ_γ : contour of loop scale factors
- BR_{Inv,Undet}: same as κ_g κ_γ but with a scale factor in the total width accounting for invisible or undetectable decay modes

SFITTER COMBINATION ARXIV:1207.6108

$$g_{xxH} \equiv g_x = (1 + \Delta_x) \ g_x^{SM}$$

$$\frac{g_{xxH}}{g_{yyH}} \equiv \frac{g_x}{g_y} = (1 + \Delta_{x/y}) \left(\frac{g_x}{g_y}\right)^{SM}$$

I – vary overall signal strength;

II – independent vector boson and fermion couplings

III – independent W, Z, t,b,τ and γ couplings IV – vary coupling ratios

IV

SPIN MEASUREMENT

ARXIV:1208.4018

- X→γγ excludes s=1 option (Landau-1948, Yang -1950)
- X→ZZ→4l system is described by 5 non-trivial angles

Different scenarios result in distinct angular distributions

scenario	comments		
0_m^+	SM Higgs boson scalar		
0_h^+	scalar with higher-dimension operators		
0-	pseudo-scalar		
1+	exotic pseudo-vector		
1^{-}	exotic vector		
2_m^+	graviton-like tensor with minimal couplings		
2_h^+	tensor with higher-dimension operators		
2_h^-	"pseudo-tensor"		

COMPARING SPIN-PARITY HYPOTHESES

 Matrix Element Likelihood Analysis (MELA) allows for optimal separation of different s^P hypotheses

 $X \rightarrow ZZ \rightarrow 4I$ 0+(SM) vs 0- hypothesis

Expected significance of hypotheses separation based on 35 fb⁻¹

scenario	$X \to ZZ$	$X \to WW$	$X \to \gamma \gamma$	combined
0_m^+ vs background	7.1	4.5	5.2	9.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1	1.1	0.0	4.2
$0_m^+ \text{ vs } 2_m^+$	1.6	2.5	2.5	3.9

MELA – WAS ALREADY USED TO SEPARATE SIGNAL FROM BG

m₄₁ [GeV]

SUMMARY

- Observed narrow resonance at 125.3+-0.6 GeV couples to weak gauge bosons and hence is potentially responsible for the EW symmetry breaking
- To verify this hypothesis it is necessary to show that its properties are consistent with the prediction:
- Spin=0, Parity =+
 - An angular based analysis is developed that has a potential to exclude pseudoscalar and tensor hypotheses based on 35 fb⁻¹
- The framework is developed to independently measure
 - Vector and fermion couplings
 - W and Z boson couplings
 - Lepton and quark couplings